
- - - -—7
/AD—A040 710 CORNELL UNIV ITHACA N V DEPT OF COMPUTER SCIENCE FIG 9/2

INOEPEPCENCE RESULTS IN COMPUTER SCIENCE, (U)
DEC 76 a HARTMANIS. J E HOPCROFT N0OO1l4 76~C~ OO1GUNCLASSIFIED CU—CSO—TR—76—296

I D E 1

U -
END

DATE
FFLMED

7—77

p

__________ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~- - -
—

~~~~~~~~ - ~~~~~~~~~~~~~~ —.~~~~~~~~~~~~
--—-

~

~~~i~
5

INDEPENDENCE RESULTS IN I
-~~~

-
~~~ I

CONPUTER SCIENCE,~ (
- _

~~~~~~T~~~~tmanis~~~~~~J .E.~~~~~~~ ofEJ
L

/ _C~A _TR~~6 296~~ I i~S-

~~~~~Department of Computer Science 
~~

Cornell University

Ithaca, N.Y. 14853 ~

- 2

~ /

~~a-p~ /9~~
N

PISTRIBUTION STATEMENT A
Approved for public release;

>1 Distribution Unlimited

I C~)

~~~~~~ ‘/-7d~~$-’~ 
(

~ /

I

L __ ‘c~7aZ~
_ _ _ _

-
- ____ -~~~ - — - — —~--—------ ~—~

~~~ 

--- --—-
~~~~~

- —

— - __________

j~~~ L4iDu f,

NTIS Win, $uIIw ~~~
~IJC lil t S.cliu

INDEPENDEN CE RESULTS IN

COMPUTER SC I ENCE * cola

J. Hartmanis and J .E. Hopcroft

Department of Computer Science

Cornell University

Ithaca , N .Y . 14853

Abstract

In this note we show that instances of problems which

appear naturally in computer science cannot be answered in

formalized set theory . We show, for example, that some

relativized vei 3ions of the famous P = NP problem cannot be

answered in formalized set theory, that explicit algorithms

can be given whose running time is independent of the axioms

of set theory , and that one can exhibit a specific context-free

grammar C for which it cannot be proven in set theory that

L (C) = E* or L(G) ~ ~~~~~~.

1. Introduction

During the last few years research in theoretical com-

puter science has identified several problems whose solution

seems to be important for the further development of the field
ovt v.

and on which a considerable amount of research effort has been

*Thjs research has been supported in part by National Science
Foundation Research Grant DCR 75—09433 and the O f f i c e of Naval
Research under Grant N 0 0 0 1 4 — 7 6 — C — 0 0 l 8 .

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



— 
~~~~-——~~~~.-- , ~~~~~

—
~~
- ____________

—2—

expended ~~~~ In spite of all this effort these problems

remain unsolved an~~~~though we understand thorn much better

now, no real progress seems to have been made toward their

solution. Nevertheless, there remains real optimism that

they will be solved and a deeply ingrained conviction that

they can be so1ved.~)
As a rnattcr of fact, for the famous

P = NP problem, be~h have been placed whether P = NP or P ~ NP

with strong convi/tion that they will eventually be collected.

• Similarly, ther
,
jis a strong conviction that with sufficient

effort andy~~verness the running time of any specific algo-

rithm ca,f”be determined .

In dfhis note ~e point5 out that many of these problems

may not have a solution in formalized mathematical systems ;
<‘,-‘.

~
I;

~•r 5I.)~~I~ ? ..s~~

more specifically , i~~~ p~~j’~~~hat the solutions of many in-

stances of these problems are independent of the axioms of

set theory i-?]. Indeed , we show that there exist relativizeci

versions of the~~ = NP problem whi ch cannot be answered in

formalized set theory , that explicit algorithms can be given

whose running time is independent of the axioms of set theory

and show in general that many other instances of problems in

computer science cannot be answered in formalized set theory .

More precisely, for a set A , A £ ~~* , let ~A be the class

of languages accepted in polyno.mial-time by deterministic

Turing machines with the oracle set A and let NPA be tI~e

corresponding class of languages accepted in polynomial—time

by nondeterministic Turing machines with the oracle set A.

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~r~~~~ ’~~
’----

~~~~~~~~~~~~~~~~~~ 
- __________________________________________

—3—

We know [2) that there exist recursive sets B and C such that

NP~ and pC ~ NPC. Using this result we explicitly con-

struct a recursive set A and show that it is independent of

• A A A A‘the axioms of set theory whether P = NP or P ~ NP

Unfortunately , this result shows only that there exist

relativized instances of this problem which cannot be solved

in the framework of formal set theory , it does not say anything

directly about the classic P = NP problem. On the other hand ,

we can show that there are other specific algorithms whose

running time is independent of the axioms of set theory . We

explicitly construct an algorithm such that it is consistant

with the axioms of set theory to assume that it runs in time

or 2’~. The algorithm can be seen (outside of formal set

theory) to run in time n2 but there is no proof in formali zed

set theory that this is the case, no bound lower than 2’~ can

be formally proven.

The same reasoning shows that many instances of questions

about context—free languages and automata are independent of

the axioms of set theory . For example, we construct a context=

free grammar G such that there is no proof in set theory that

L(G) = ~~ or L(G) ~ ~:* .

Looking at problems in computer science, with these re-

sults in mind , we have to conclude that many different problems

which appear naturally in computer science will have specific

instances which cannot be answered by standard mathematical

methods since they are independent of the axioms and formal

~~



— —_—--—~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~z- ’-- ’-• r• -— ”~ ~~~~~~~~~~~~~~

—4—

reasoning used in most of mathematics . It seems particularly

surprising that this already happens in the analyses of

running times of algorithms.

It should be pointed out that similar results are known

in some parts of pure mathematics but they do not seem to be

as prevalent as in computer science problems . This is caused

by the difference in the problem areas: in computer science

we deal with computations , with devices which perform these

computations and with properties of computations. In all

these cases we can embed “universal” computations and “self=

referencing” in these problems and thuc reach instances of

problems which cannot be answered in formal mathematical sys-

tems. On the other hand , in many parts of mathematics either

such embeddings and self—references do not exist or are ex-

tremely hard to find. For example , the solution of Hilbert’s

tenth problem [7] is recognized as a great achievement mainly

because the embedding of universal computations in diophantine

equations was exceedingly difficult. Once this embedding is

known , one can easily show that there exist diophantine

equations for which there exist (integer) solutions but that

their existence is independent of the axioms of set theory .

It is to be expected that results of this type will be

found in other parts of mathematics. In general though , we

have to expect that this will not permiate mathematical re-

search areas. The situation in computer science is quite

dif ferent, as stated before, the central object of study in

~ 

~~~ ::::~~~~~~~ i~~~ _ _ _ _ _ _ _  ___


—.--••--— ~~~~~~~~~~~~~~~~~~~~~~ ~~ —•~.i_ ” — —-—--
~~~

-

- 

—5—

this science is computation which unavoidably brings with it

instances of problems which cannot be solved by traditional

mathematical methods .

2. The P = NP Problem

We now turn to the problem of exhibiting a recursive set

A such that = ~pA is independent of the axioms of set theory .

Let F be any formal mathematical system for proving

theorems . We assume that F is axiomatizable (i.e. that the set

of provable theorems is recursively enumerable) , that F is

consistant , that the provable theorems are intuitively true

and that F is of sufficient power to prove the basic theorems

of set theory . Let 
~~i’ +21 . . .)  be an acceptable enumeration

of all one-tape Turing machines. Thus we know that the Sinn

and recursion theorems hold for this enumeration [8]. Further-
4,.

more , for the sake of brevity , we will write P ~ and NP ~~, re-

spectively, for and NPA provided 4~ 
accepts the set A. Let

4.1~ denote convergence and lI divergence of algorithms.

• Theorem: For every F we can effectively construct an i such
4,. 4,.

that is recursive and the relativized p = NP ~ is inde-
4,. 4,.

pendent of F. That is P = NP can neither be proved nor

disproved in F.

Proof: Let B and C be recursi~&e sets such that ~
B NPB and

pC 
~ NPC. From (23 we know that such sets exist and are

effectively constructable. Define .



• if there exists a proof among

the first x proofs in F that
4, . 4 .

= NP ~ and x e C or if there

4t (x ,j) = exists a proof among the fi rs t
4 .  4 , .

x proofs in F that P ~ NP

and x c B

otherwise

Now by the Smn theorem there exists a recursive cr such that

= •(x,j).

By the recursion theorem there exists i0 such that

4t~~ (x) = a(i0) 
(x).

Thus

(x) = •(x,i0).
4 , .  4.

If there is a proof in F that P 10 = NP ‘~~ , then the set

accepted by 4 .  differs at most finitely from C and hence we
• 

1O~~
know p 10 

~ NP 10. Similarly if there is a proof in F that
4,.

p 0 
~ NP 

10 , then the set accepted by 4~ differs at most
• 

0
finitely from B and hence p 10 = NP ~~. Since F is such that

any theorem proved in F is intuitively true we conclude that
4’i •ithere can be no proof of either P ~ = NP 0 or P 0 

~ NP 
0

in F. Thus whether or not P 0 = NP 0 is independent of the

formal mathematical system P. I~

Intuitively we know that in the above construction ac—
4,.

cepts the empty set and P = NP 1 ~S true if and only if

P = NP in the classical version. Still it does not follow from

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .


—7.-

this proof that the unrelativized version is not provable in

set theory. What we have just proven suggests the possibility

that the unrelativized P = NP problem could be independent of

‘the axioms of set theory. It may be possible to have two com-

pletely consistent theories of computation , one in which P =

NP is an axiom and the other in which P ~ NP is an axiom.

3. Analysis of Algorithms and Other Problems

Next we exhibit an algorithm which cannot be analyzed

in the sense that its running time is independent of the

axioms of F. Blum ’s speed up theorem [4] shows that there

are functions with no best algorithm. What we are saying is

something entirely different. There are algorithms with

definite running times which are not provable in set theory.

In particular we will exhibit an algorithm which runs in time

but for which there is no proof in F of an upper bound

less than nor is there a proof in F of a lower bound greater

than n2. Consequently formal mathematics is not powerful

enough to analyze all algorithms.

To do this we first prove a lemma.

Lemma: Given the formal system F we can exhibit an i such that

the halting of the i~~ Turing machine when started on blank

tape cannot be proved or disprQved in F.

Proof: Let qS~ (-) denote the i~~ Turing machine with blank in-

put tape. Define .

_ _

- ~~~~~~~~ - ——--~~~~~~~

(4if there exists a proof in F

• (x ,j) =
that

I.. 11’otherwise

Again by the Srnn and recursion theorems there exist a and i0

such that

$(x,j) = “a-(j) Cx)

and

Cx) = a (j) Cx)

By a meta argument we conclude that t
j (-) does not halt, since

if •~~(-)
halts then there cannot be a proof in F that

which is the only way •~~ (-) can halt. Thus there is no proof

in F that +~~~~(—) does not halt nor can there be a proof in F

that it does halt. ~

Clearly we already knew of the existence of the i satis-

fying the last theorem. A proof in F for each i that did

or did not halt would imply that {i~4~ (—)4J’) was recursive.

What the lemma shows is that we can effectively exhibit a

specific Turing machine which does not halt on blank tape but

for which there is no proof of this fact in F.

We now show that some algorithms with well defined running

times cannot be analyzed in F.

To reveal the simplicity of this proof we make an addi-

tional assumption about the formal system F, as described below.

This assumption is not essential for ~the next result, but with-

out it our proofs become considerable longer, since we have to

~

-.. -~~~~~~~~--- ~~~ .

‘~ ~~~~~ ~~~~~
-
~~~~~~~~~ ~~~~~ - ~~ ‘- , .,,—~ --~~—---,-- ~-~~~ -_.,-~~.-----—----

- — 9—

show that the application of the Smn and recursion theorems

in this proof do not change the running times of algorithms

drastically . This can be done, but for the sake of brevity,

‘we are omitting this longer proof.

For any j let • (~) be a Turing machine which for input

n simulates 4~ C-) for n steps and if (-) has not halted in

n steps •~ (~) (n) halts in exactly n
2 steps; if +~~ ( — ) does halt

in n steps then •~ (~) (n) halts in exactly 2~ steps.
We assume that there is a construction P, as described

above, such that we can prove in F for all j that:

•p(j) runs in time < 2~ if f 4~~~(~~ ) does not halt.

Theorem: There exists an algorithm (which can be explicitly

given) whose running time is n2, but there is no proof in F

that ~t runs in time <

Proof: Let i0 be an index such that 4,. (-) does not halt and10

for which there is no proof in F tha+ C-) does not halt; our

previous corollary guarantees that we can effectively obtain

such i0 .  Then , from our assumptions about F , it follows that

there is no proof in F that • (i) runs in time < 2~~ since

this would prove in F that $~~~~(-) does not halt. Thus 4,p (j)

is an algorithm running in time n2 for which there is no proof

in F that it runs in time less than 2
~~~~
. 0

A similar proof yields the following result.

Corollary: There exists an algorithm which runs in time

~

~~~~~~~~~~~~~~~~ ~ t k ~~~~ -



— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ‘ ‘ ‘~r~. —’r’. w’”~~ - ‘ r. --n ,w~r~~’~ . -~~ fl ~~~~ •— , ‘~~~w— - - - .——- -—r’~ •‘—~

—io-

n2 but for which there is no proof in F that it is a total

function, thus no running time bound can be proven for

in p.

Next we show that simple problems about context-free

languages are independent of the axioms of F, provided we can

prove in F elementary facts about context-free languages.

Theorem: One can exhibit a context—free grammar G such that

•
• L(G) = E* but for which there is no proof in F that L(G) =

or L(G) ~ E~~.

Proof: Using standard techniques [6] given i one can construct

G. such that L(G1) = E* if f + .(-)4 1’. • Furthermore , if F is

sufficiently rich, a proof in F that L(G~) does or does not

equal Z~ can be extended to a proof in F that does or does

not converge . But then using an
~o for which there is no

proof that 4,~ (—) ‘if, we get a G1 = E* but there is no proof

in F that L (G .) = ~~ or L(G.) ~E U
10 10

Corollary: One can exhibit a specific recursive function t

such that the equality of the time complexity classes C~ and

Ct2 is independent of F.

Proof: Similar to the previous proof. ~

4. Conclusion

These results are presented not as something new or pro-

found but only as a caution to computer scientists working in

- • ----- •
~~~~

- . — - - . -
~~~~~~~~

--

F ~~~~~~~ ~~w•—~--

—11—

complexity , lower bounds , analysis of algorithms, and related

• topics. One should recognize that due to the self-referencing

ability of our formalisms we can reformulate G~del’ s incom-

pleteness theorem in computer science problems. Thus given

set theory or any other formal theory there are many specific

instances of problems with which we are concerned but which

are independent of the theory. What this suggests is that our

inability to settle questions like the P = NP problem or prove

lower bounds may be a consequence of the power (or weakness)

of formal systems such as set theory. Clearly an exciting re-

sult would be to discover a natural instance of such a problem.

- -~~~•~~~~~~~~~~— ~~~~•i_ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-~ —rrr-.--~~~~~~~.•~~~ ““-W - -~~~~~ - -

-

— 12—

References

1. Aho, A.V ., J.E. Hopcroft and J.D. Ullinan, The Design and
Analysis of Computer Algorithms,” Addison-Wesley

Publishing Co., Reading, Nass., 1974.

2. Baker, T., J. Gill and R. Solovay, “Relativizations of

the P = ?NP Question,” SIAM J. on Comp. 4:4 (1975),

pp. 43 1—442.

3. Bernays, P., and A.A. Fraenkel, “Axiomatic Set Theory ,”

North Holland Publ., Amsterdam, 1958.

4. Blurn, N., “A machine-independent theory of recursive func-

tions,” JACM 14:2 (1964), pp. 322—336.

5. Hartmanis, J. and J. Simon, “On the structure of feasible

computations” in Advances in Computers Vol. 14

(Edits. Morris Rubinoff and Marshall C. Yovits),
Academic Press , New York , N~Y., 1976. pp. 1-43.

6. Hopcroft, J. and J. Uliman , Formal languages and their
relation to automata, Addison-Wesley , Reading , Mass.,

1969.

7. Matijasevic, Y. “Enumerable sets are Diophantine” (Russian),

Doki. Acad. Nank. SSSR 191 (1970), pp. 279—282 .

8. Rogers, Hartly, Jr., “Theory of Recursive Functions and
Effective Computabi lity , ” McGraw—Hill , New York , N.Y.,
1976.

